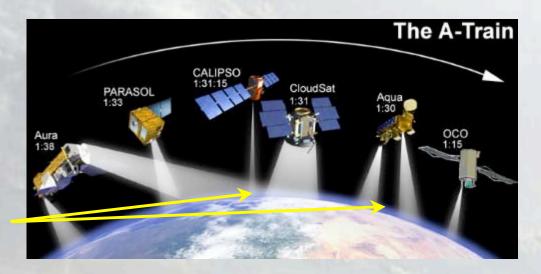


AIRS-MLS Upper TroposphericWater Vapor Comparisons

Eric Fetzer

Jet Propulsion Laboratory, California Institute of Technology

AIRS Science Team Meeting, Greenbelt, MD 27 September 2006


Executive SummaryAIRS-MLS upper trop. water vapor

- Excellent agreement (~30% RMS; <5% bias) at 250 hPa for non-polar latitudes.
- Poorer agreement at 300, 200 & 150 hPa
 - Different sampling distributions.
 - MLS ~30% dry at 300 hPa.
- Ranked statistics (e. g. medians, percentiles) often agree despite large RMS differences
 - Highly non-gaussian data with many outliers
- AIRS less sensitive in stratosphere and tropical upper troposphere
 - AIRS may have NO skill (except climatology) down to 300 hPa over poles.
 - Some sensitivity to 150 hPa in tropics.
- MLS appears more strongly affected by (ice) clouds than is AIRS.
 - Most pronounced in the moist tropics
 - Later data versions may fix this.

The Instruments

- AIRS: Atmospheric Infrared Sounder on Aqua
 - Sensitive to ~0.1 mm total water (10-20 ppmv in Gettelman et al. 2004, GRL).
- MLS: Microwave Limb Sounder on Aura
 - Water vapor from 316 hPa upward.
 - Sensitive down to very low amounts (a few ppmv).

The samples are minutes apart.

Some Questions

- Where do AIRS and MLS have similar water vapor observing characteristics?
 - Looked at distributions, ranked statistics, summaries (mean, std. dev.), correlation, linearity.
- Where (and why) do they observe differently?
- What are the effects of clouds on sampling?
- How do these vary between seasons?
 - Look at all AIRS-MLS matches for 2005.

Use Nearest Neighbor Matching

Why:

- The goal of this work is reconciling the two data sets
 - ~25% RMS & ~5% bias are 'close enough'
- Sampling effects of clouds are critical to understanding climatologies
 - Both instrument flag 'undesirable' scenes. Keep track of these...

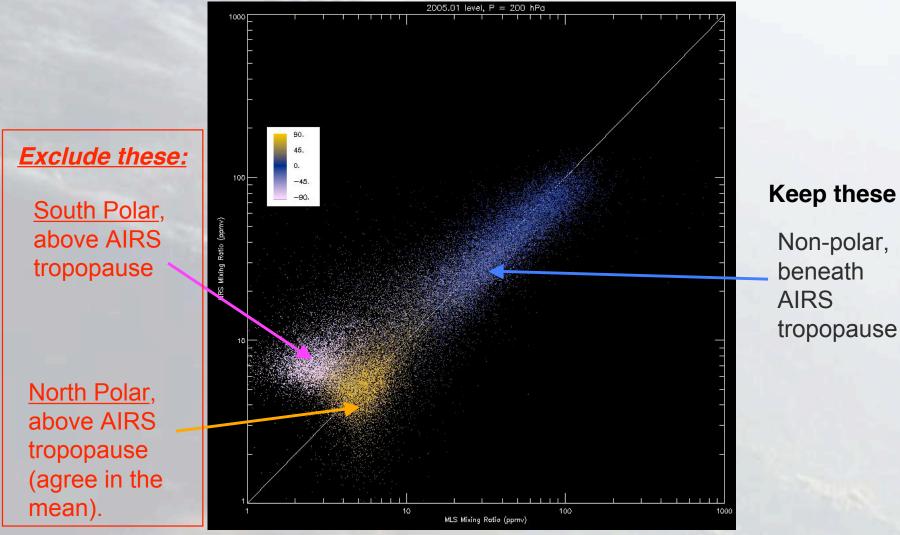
More Matching Issues...

- Count only AIRS-MLS match-ups.
 - This under-represents AIRS sampling by a factor of ~100.
- Place both data sets on the AIRS standard levels of 300, 250, 200 and 150 hPa.
 - AIRS: geometric mean of layers.
 - MLS: Log(mixing ratio) linear in Log(p).

Quality Flagging

Both instruments use quality flags

AIRS


- Scattering of microwaves by precipitation, or cloud cover greater than 50-70%.
 - Use Qual_Temp_Profile_Mid = 0.

- MLS

- Microwave scatter from ice particles larger than ~10 microns.
 - Use Quality >5.0 at 316 hPa, >0.3 above

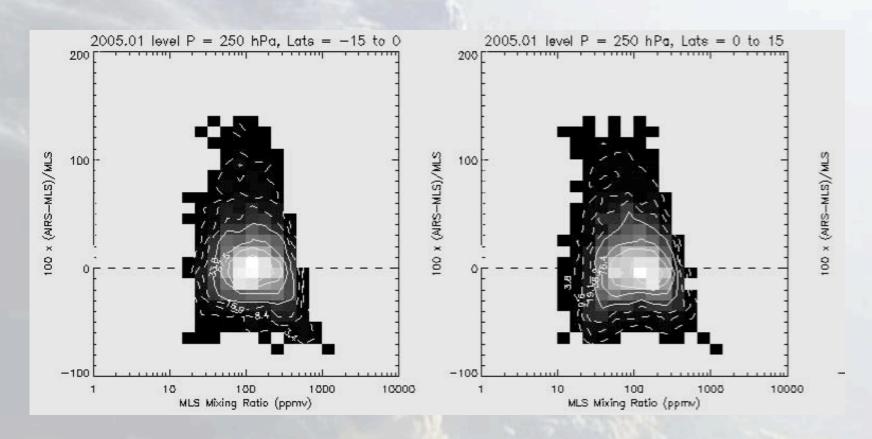
First Lesson: Important to exclude AIRS water vapor above tropopause AIRS versus MLS at 200 hPa

Sampling by month and latitude

Examine:

- Twelve months in 2005.
- Twelve 15-degree latitude bands.
- Four pressures: 300, 250, 200 & 150 hPa.

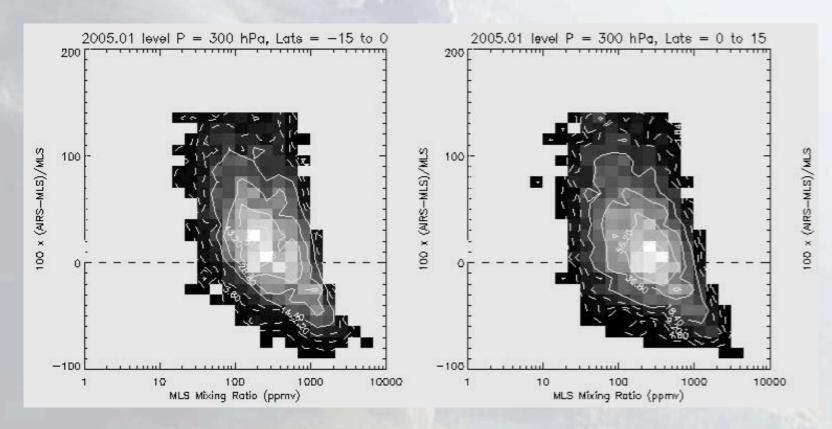
We see:


- AIRS is often 'stratospheric' down to 300 hPa over poles.
- Many familiar regions of poorer AIRS yields:
 - Subtropical stratus.
 - Midlatitude storms.
 - Polar regions in summer.
- Both AIRS and MLS have low yields in regions of deep convection
 - Very important for MLS ice-water vapor climatologies.

Tropics, 250 hPa

Small biases, RMS agreement to ~30% for all months

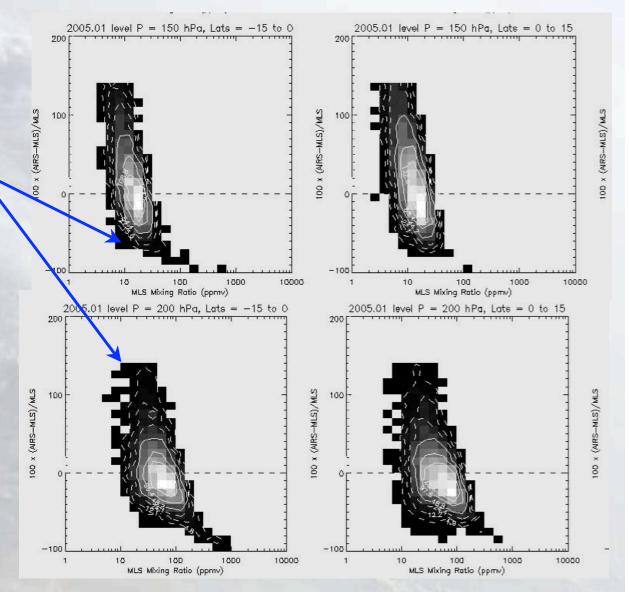
Relative differences roughly constant with amount



Tropics, 300 hPa

Agreement *poorer* than at 250 hPa MLS ~30% drier

Relative differences vary with amount



Tropics, 200 & 150 hPa Differences vary with amount

NOTE: Sensitivity threshold varies with height!

Gettelman et al., 2004, GRL say it's constant at 10-20 ppmv.

Conclusions and Future Work

- Agreement to a few percent in mean, 25% RMS at 250 hPa
 - consistent with MLS-CFH sonde results by Holger Vömel, Costa Rica.
- MLS dry bias of ~30% at 300 hPa noted by Vömel, others
 - Tobin shows AIRS dry bias of 10%.
- Mixed results at 200 & 150 hPa
 - Low-end insensitivity by AIRS could explain this.
- Examining effects of cloud sampling
 - Complementary data sets in tropics
 - MLS misses much water vapor -- but samples ice!
 - AIRS nicely samples water vapor.
- Manuscript(s) currently in preparation.